WHAT DOES THE MAHARISHI TECHNOLOGY OF THE UNIFIED FIELD MEAN FOR SOCIAL WORK? A STUDY IN AUSTRALIA

SANDY GOWING PRICE
University of Sydney, Sydney, New South Wales, Australia

The following is a summary of the author's Bachelor of Social Work (Honours) Thesis, conducted at the University of Sydney, Sydney, Australia, 1986.

This study found that during a period in January 1983 when the size of a group of participants in the Transcendental Meditation Sidhi Programme, including Yogic Flying, reached the square root of one per cent of the population of Australia, there was a significant improvement in the quality of national life in Australia, as measured by reduced fatal traffic accidents, reduced unemployment, and increased value of a stock market index.—EDITOR

For many years it has been predicted that group practice of the Maharishi Technology of the Unified Field (the Transcendental Meditation and TM-Sidhi program) alleviates societal stress and that this is measurable using specific social indicators. A growing body of research has accumulated during the past decade supporting this phenomenon in countries in North America, Europe, and Asia.

Research has indicated that a group of participants in the Transcendental Meditation and TM-Sidhi program, equal to at least the square root of one per cent of the population, is sufficient to improve measurably the quality of life of the whole society. This prospective study was designed to test this hypothesis within an Australian context and to relate its significance to future directions of Social Work.

A Box-Jenkins autoregressive integrated moving averages (ARIMA) time series analysis was used to investigate the effect of the group practice of 400 experts in the Maharishi Technology of the Unified Field (including the TM-Sidhi program technique of Yogic Flying) during January 1983 in Goulburn. This number equalled the square root of one per cent of the population of Australia for 1983. The duration of the assembly of TM-Sidhi participants was 1-29 January 1983. The threshold number of 400 was reached during the second week (8-15 January); since many variables were available monthly, the month of January was taken as the intervention period for monthly data, even though the magnitude of effect would not be predicted to be as great as if the group was 400 in number during the entire month. Predicted effects were given by another researcher in advance of the assembly of TM-Sidhi experts.

The following variables were analyzed: monthly number of fatal traffic accidents over the nine-year period from 1976-1984; monthly unemployment, seasonally adjusted, from the Australian Bureau of Statistics, over the six-year period 1978-1983; the Sydney-Melbourne All Ordinaries Index of stocks (comprising 270 stocks in 1983), on a daily basis over the nine-month period September 1982-May 1983. Other variables (crime, prescribed drugs, and infectious diseases) were not able to be analyzed because of statistical problems with the data. In the case of each variable, a time series impact assessment analysis was performed for the impact of the assembly of experts in the Maharishi Technology of the Unified Field. The impact period was January for monthly data, or the first two weeks of January for the daily data of the Sydney-Melbourne All Ordinaries Index, since the number of assembly participants was approximately the square root of one per cent of the population of New South Wales during the first week, and thus could have influenced this parameter then as well as in the second week; the number of participants dropped in the third week to about 20% of the number in week two, with a further drop in week four.

The fatal traffic accidents data was differenced at lag 1 for stationarity. The time series model specified multi-
multiplicative moving average parameters at lags 1, 2 and 12, and a lag-zero (simultaneous) impact of the assembly. Diagnostic checks showed the model to be satisfactory, with nonsignificant Ljung-Box statistics at lags 12 and 24, homogeneous variance, and no outliers. Parameter estimates were robust to alternative specifications of the noise model. Moving average parameters were, respectively, lag 1: 0.88, \(\tau(103) = 0.16,16 \); lag 2: 0.21, \(\tau(103) = 1.83 \); and lag 12: -0.32, \(\tau(103) = -3.25 \). The impact of the TM-Sidhi assembly was -34.16, \(t(103) = -3.77 \), and a lag-zero (simultaneous) impact of the assembly. Diagnostic checks showed the model to be satisfactory, with nonsignificant Ljung-Box statistics at lags 12 and 24, no significant autocorrelations at lags 1–36, homogeneous variance, and no outliers. Parameter estimates were again robust to alternative specifications of the noise model. The values of the four autoregressive parameters were, respectively, lag 2: 0.83, \(\tau(26) = 7.97 \); lag 12: -0.25, \(\tau(26) = -1.97 \); lag 13: -0.66, \(\tau(26) = -3.51 \); lag 14: 0.63, \(\tau(26) = 3.26 \). The impact of the TM-Sidhi assembly was -39.23, \(t(26) = -3.77, p < .0005 \). This indicates a reduction of monthly fatal accidents by 34.16 during January 1983, a 14.0% decline relative to the monthly rate of 473,300 during the non-experimental baseline period (please refer to Figure 1).

The unemployment variable also required differencing at lag 1 for stationarity. The time series model had autoregressive parameters at lags 2, 12, 13 and 14, together with the lag-zero impact parameter for the assembly. Diagnostic checks showed the model to be appropriate, with nonsignificant Ljung-Box statistics at lags 12 and 24, no significant autocorrelations at lags 1–36, homogeneous variance, and no outliers. Parameter estimates were again robust to alternative specifications of the noise model. The values of the four autoregressive parameters were, respectively, lag 2: 0.83, \(\tau(26) = 7.97 \); lag 12: -0.25, \(\tau(26) = -1.97 \); lag 13: -0.66, \(\tau(26) = -3.51 \); lag 14: 0.63, \(\tau(26) = 3.26 \). The impact of the TM-Sidhi assembly was -39.23, \(t(26) = -3.77, p < .0005 \). This indicates that the monthly rate of unemployed persons dropped by an estimated 4.9 points per day during the two-week experimental period, over and above the average daily change during the non-experimental baseline period, indicating increased economic confidence (please refer to Figure 2).

These results document a holistic improvement in the quality of life of Australia during the month of the assembly of 400 experts in the Maharishi Technology of the Unified Field, supporting the theoretical model of a field effect of consciousness. Because this technology is preventive, has immediately measurable effects, and is neither costly nor difficult to implement, it should be given strong consideration in social policy evaluation.