
Audri Gordon Lanford
Maharishi International University, Fairfield, Iowa, U.S.A.

Research completed June 1984.

Homicides in Washington, D.C. were found to decrease due to the rise of coherence in collective consciousness resulting from group practice of the Maharishi Technology of the Unified Field.—Editors

There are over 20 studies that have supported the prediction that the quality of life in an area can be significantly improved by a small number of individuals practicing the Maharishi Technology of the Unified Field. The purpose of this study was to examine the effect of collective practice of the Maharishi Technology of the Unified Field on the reduction of the number of homicides in the District of Columbia using interrupted time series analysis. The Metropolitan Police Department of the District of Columbia supplied the homicide data for the period of the study: from August 1980 through November 1983.

The time series results strongly support the main hypothesis: The number of homicides was reduced by 22% (p<.02) during weeks in which the threshold of 400 experts collectively practicing the Maharishi Technology of the Unified Field was achieved. Alternative explanations, including seasonal variations, weather patterns, changes in police coverage, increases in neighborhood watch programs, and demographic shifts are considered. The implications of these results for the reduction in the number of homicides, and more generally for the improvement in the quality of life in society, are also discussed.

Introduction

There are now over 20 studies that demonstrate the positive effects on the quality of life in society produced by a small number of individuals practicing the Maharishi Technology of the Unified Field, the Transcendental Meditation and TM-Sidhi program (e.g., Borland and Landrith, 1977; Dillbeck, in press; Dillbeck et al., 1981; Dillbeck et al., in press; Lanford, in press; Orme-Johnson et al., in press; and other papers in Chalmers et al., in press). These studies utilize a wide variety of methodological designs (including experimental and quasi-experimental methods, and statistical procedures such as multiple regression and ARIMA time series), many indicators of quality of life (such as crime, suicides, traffic fatalities and accidents, war casualties, unemployment, and improvements in education, economic conditions, and family relations), and different levels of analysis (city, state, and nation). This paper adds to this growing body of research by examining the effects of the collective practice of the Maharishi Technology of the Unified Field on homicides in the nation's capital.

Homicide is an excellent indicator of the level of disorganization of a society, and therefore inversely reflects an improvement in quality of life. In addition to its obvious substantive importance, homicide statistics are quite reliable. Because of their serious nature, most homicides are reported to the police; further, the Federal Bureau of Investigation's Uniform Crime Reporting System (FBI-UCR) estimates that it receives reports on 96 to 98% of all police
recorded homicides (Jason et al., 1983b). The District of Columbia is a good choice for the site of this study because of the many challenges it faces in the improvement of its quality of life, and because of its central role in the world. The aim of this study is to test the causal connection between the collective practice of the Maharishi Technology of the Unified Field and homicides in Washington, D.C. using ARIMA time series analysis, in order to evaluate the effectiveness of this program for improving quality of life.

Social science research has provided a good deal of information about some of the characteristics of homicide: for example, the number of homicides that occur, the distribution of homicide victims and offenders, the different types of homicide, and the relationships between offenders and victims. In 1982, FBI-UCR estimated that 21,012 homicides occurred in the United States: the national murder rate was therefore 9.1 per 100,000 inhabitants (FBI-UCR, 1982). Homicide rate varied by geographical region (with the highest rate occurring in the South), gender (76% of the victims were male), and race (55% of the victims were white, 42% black, and 2% were other races). Forty-one percent of the murders committed in 1982 were the result of arguments. Fifty-five percent of the murders committed in 1982 were perpetrated by relatives or persons acquainted with the victim, leading the FBI-UCR to state that “[i]t has long been recognized that murder is primarily a societal problem over which law enforcement has little or no control” (FBI-UCR, 1982, p. 12).

In Washington, D.C. there were 194 homicides during 1982. This represents a murder rate of 30.74 per 100,000 population, 3.38 times the national average. New York City, Chicago, and Los Angeles had murder rates of 23.50, 22.18, and 27.36 per 100,000 respectively (FBI-UCR, 1982). It is obvious that homicide is a very serious problem in the District of Columbia.

Although fairly good statistics on the magnitude of the problem exist, much less is known about the causes of homicide, and still less is known about how the number of homicides can be reduced. Strategies to reduce homicide have tended to focus on education, decreasing intrafamilial violence, stress reduction, and improving the quality of interpersonal relationships (e.g., Jason et al., 1983a; Jason et al., 1983b; Tyler, 1983). It is obvious that although these approaches may have some value, they have not significantly reduced the problem of homicide. A comprehensive theory is clearly needed.

Maharishi Mahesh Yogi has proposed a holistic approach for improving the quality of life in society, called the Maharishi Technology of the Unified Field, which integrates the theoretical knowledge of the unified field provided by modern quantum physics with the direct experience of the unified field of all the laws of nature provided by ancient Vedic Science (Hagelin et al., in press). According to quantum field theory, all the particles and forces in nature are just discrete modes of excitation of underlying quantum fields. All of these quantum fields in turn have their origin in a single unified field, which embodies the total potential of natural law. Leading physicist Dr. John Hagelin has described this unified field as a non-Abelian or self-interacting field of pure intelligence which sequentially generates all the fundamental particles and forces of nature through its infinitely self-referral dynamics at the Planck scale of nature’s functioning (10⁻³⁵ cm or 10⁻⁴³ sec). This quality of self-referral identifies the unified field with the field of consciousness, since consciousness alone has the ability to know itself in a completely self-sufficient manner (Hagelin et al., in press).

Thus, the unified field of natural law is directly accessible to human consciousness in its fully self-referral state. There are many studies that show that repeated experience of this all-inclusive state of consciousness through the practice of the Maharishi Technology of the Unified Field is associated with positive physiological, psychological, sociological, and ecological changes (e.g., Chalmers et al., in press; Orme-Johnson and Farrow, 1977; Orme-Johnson and Haynes, 1981).

Maharishi further explains the relationship between the individual and society and between individual and group functioning using this unified field perspective. The individual and society are intimately connected at the level of the unified field of natural law, which is the source of both individual and collective consciousness. At this level, individual consciousness has a profound impact on collective consciousness, and collective consciousness in turn affects individual consciousness. “It is the stressed individuals in society who continually violate natural law, giving rise to stress in collective consciousness. An at-

1. Homicide is defined as the willful (nonnegligent) killing of one human being by another, and does not include deaths caused by negligence, suicide or accident, or justifiable homicide (FBI-UCR p. 6).
Atmosphere of stress inevitably leads to further crime, negativity, and anti-social behavior. The Maharishi Technology of the Unified Field simultaneously eliminates stress in individual and collective consciousness, creating an atmosphere of harmony and coherence in which all members of society naturally begin to think and act in a more positive and life-supporting manner" (MERU and MIU Faculties, in press).

In 1960, Maharishi predicted that, when as few as one percent of the population of an area practice the Transcendental Meditation program, an influence of orderliness and coherence would be generated that would significantly improve the quality of life in the area. The initial study (Borland and Landrith, 1977) to examine this effect compared crime rates of 11 cities where one percent of the population practiced the TM program with 11 control cities which were matched demographically in terms of size, resident population, college population, geographic region, and initial crime rate. The crime rate in the "one-percent cities" decreased an average of 8.2%, whereas the crime rate in the control cities increased an average of 8.3%. Landrith and Dillbeck (in press) also found that the number of traffic accidents and suicides for these one-percent cities showed a similar decrease. These studies have been replicated many times using various methodological designs and different cities (e.g., Dillbeck et al., 1981; Dillbeck et al., in press; Dillbeck, in press).

This improvement in the quality of life produced by one percent of the population practicing the Transcendental Meditation program was termed the "Maharishi Effect" by the researchers who first discovered it. The introduction by Maharishi of the more advanced TM-Sidhi program was rapidly followed by the discovery that a much smaller proportion of a population (about the square root of one percent) collectively practicing the TM-Sidhi program produces an even more powerful influence termed the "Extended Maharishi Effect" (e.g., Burgmans et al., in press; Dillbeck et al., in press; Lanford, in press). This phenomenon has also been called the "Super Radiance Effect" due to its parallel with the phenomenon of superradiance in physics. Superradiance is exemplified by the generation of highly coherent light in lasers. Whereas in ordinary light, the intensity is proportional to the number of photons, the intensity of laser light is proportional to the square of the number of photons.

In summary, prior theory and research suggest that a small proportion of individuals practicing the Maharishi Technology of the Unified Field can produce a profound positive effect on the quality of life of an area. This proportion can be one percent of the population of an area practicing the TM program (the Maharishi Effect) or the square root of one percent of the population collectively practicing the TM-Sidhi program (the Extended Maharishi Effect).

The purpose of this study was to test these ideas empirically by examining the relationship between homicide data and data on the collective practice of the Maharishi Technology of the Unified Field using time series techniques. More specifically, the aim was to test two hypotheses. The first hypothesis is a straightforward application of Maharishi's predictions described above: As the number of experts collectively practicing the Maharishi Technology of the Unified Field reached the square root of one percent of the population of the District of Columbia metropolitan area (173), the number of murders would significantly decrease. The second hypothesis is based on a special Extended Maharishi Effect requirement for Washington, D.C.: As the number of experts collectively practicing the Maharishi Technology of the Unified Field reached the threshold of 400, the number of homicides would decrease even more significantly. Because Washington, D.C. is the focus of so much collective stress (both nationally and internationally), and because of its central governmental role, Maharishi has called for 400 experts collectively practicing the Maharishi Technology of the Unified Field to produce the Extended Maharishi Effect for the nation's capital.

METHOD

DATA AND MEASUREMENT—The basic data employed in this paper are a weekly time series of the number of homicides for Washington, D.C. for the period of August 1980 through November 1983. The District of Columbia was selected for both substantive and methodological reasons. Washington, D.C. has a very significant homicide problem and is clearly an important city. Homicide statistics for the District of Columbia are available on a daily basis. Further, Washington has experienced a rapid growth in the number of experts participating in the collective practice of the Maharishi Technology of the Unified Field: this number has grown from virtually nil to several hundred since August 1980.

Daily homicide totals were obtained from the Metropolitan Police Department for the District of Columbia (MPDC) for the period from 1 August
1980 to 30 November 1983. The data were aggregated into a weekly-level series, comprising 173 observations. Weekly homicide totals rather than rates served as the dependent (endogenous) variable because changes in population were not available on a weekly basis.

The threshold of 173 experts collectively practicing the Maharishi Technology of the Unified Field (for hypothesis 1) was first achieved in mid-October 1981. During the following eight weeks, this threshold was achieved four times and was subsequently maintained for the rest of the series. The threshold of 400 experts collectively practicing the Maharishi Technology of the Unified Field (for hypothesis 2) first occurred in June 1982, but was not maintained consistently until mid-May, 1983. Between June 1982 and November 1983, the threshold was achieved 38 (out of 76) weeks, for a total of six separate intervals, ranging from 1 to 28 weeks per interval. Daily-level data on the number of experts collectively practicing the Maharishi Technology of the Unified Field were obtained from Maharishi International University College of Natural Law and were aggregated into a weekly-level series. The two independent (exogenous) variables used for this study were whether each threshold (173 or 400) was achieved or not during each week of the study.

METHOD OF ANALYSIS—The statistical methodology that was utilized in this study is impact assessment analysis or interrupted time series analysis (Box and Tiao, 1975), which is a special case of Box-Jenkins transfer function analysis (Box and Jenkins, 1976). The standard Box-Jenkins iterative model-fitting procedure of identification, estimation, and diagnostic checking was employed (Box and Jenkins, 1976).

It should be noted that the transfer function approach for analyzing the dynamic relationship between time series variables is a rather conservative method. This methodology imposes a stringent test of the existence of a relationship between the dependent and explanatory variables since “significant explanatory variables must explain the residuals from the best ARIMA model representing the time series behavior of the dependent variable” (Hartman and Makin, 1982, p. 26, cited in Cavanaugh et al., in press). The effect of the explanatory variable on the dependent variable is presumably already reflected in the dependent variable time series, so that the transfer function analysis addresses the question of whether or not there is any additional information provided by the explanatory variable (Cavanaugh et al., in press; Jenkins, 1979).

The intervention assessment model that was tested here is the “zero order” transfer function model:

\[Y_t = \omega I_{t,b} + N_t \]

where \(Y_t \) is the observed endogenous time series (weekly homicide totals), \(I_t \) is the intervention (exogenous variable), \(b \) is an integer time-delay parameter, \(\omega \) is the intervention parameter to be estimated, and \(N_t \) is a stochastic “noise component” to be modeled using an autoregressive integrated moving average (ARIMA) model (Box and Jenkins, 1976; McCleary and Hay, 1980).

The first step in the analysis was the construction of an ARIMA model for \(N_t \), the noise component of the model. The model was selected based on the autocorrelation and partial autocorrelation structure of the time series. The model included second-order, fourth-order, eighth-order, and seventeenth-order autoregressive component parameters (biweekly, monthly, bimonthly, and triannual seasonality) and a constant. Thus, the model identified for \(N_t \) was:

\[N_t = (1 - \phi_1 B - \phi_2 B^2 - \phi_4 B^4 - \phi_8 B^8 - \phi_{17} B^{17})^{-1} a_t + c \]

where \(B \) is the backshift operator such that \(B^4 Y_t = Y_{t-4}, \phi_1, \phi_2, \phi_4, \) and \(\phi_8 \) are seasonal autoregressive parameters, \(c \) is a constant, and \(a_t \) is a series of independent and identically distributed random disturbances.

The purpose of identifying this model was to remove any predictable ARIMA structure within the endogenous series before examining the impact of the intervention. This model was able to successfully transform the series so that the behavior of the residuals is consistent with the assumption that they...
are drawn from a serially uncorrelated "white noise" process. The identification of the serial correlation structure allows it to be removed when the full intervention model is identified, which yields an accurate estimate of the intervention parameter.

The next and final step in the analysis was the identification and estimation of the full impact assessment model:

\[Y_t = \omega I_{t-b} + \epsilon_t. \]

The results of the analyses are presented in the next section. In all cases, diagnostic tests of the residuals of the models were satisfactory. The residual autocorrelations were therefore consistent with the null hypothesis of a serially independent white noise disturbance term. Further, the Ljung-Box test for the joint significance of observed residual autocorrelations (Ljung and Box, 1978) yielded Q-statistics (reported below) which were not statistically significant. Thus, the null hypothesis of white noise random disturbances could not be rejected at the usual .05 level of significance in the models reported below.

RESULTS

Table 1, model A presents the parameter estimates and corresponding t-statistic values of the noise component of the model.

Hypothesis 1 predicts that, as the number of experts collectively practicing the Maharishi Technology of the Unified Field reaches the square root of one percent of the population of the District of Columbia (173), the number of murders would significantly decrease. Unfortunately, it was not possible to test this hypothesis. This was because the correlation between the 173 threshold \((TH-173) \) and the constant term in the time series model was \(-.81\), which made any estimate of the 173-threshold parameter very unstable. This correlation is so high because the .173 threshold, once achieved, was consistently maintained with only a few weeks with any variation. Thus its behavior is very similar to a constant term. Therefore this hypothesis could not be tested.

Hypothesis 2 predicts that, when the number of experts collectively practicing the Maharishi Technology of the Unified Field reached 400, the number of homicides would significantly decrease. The time series results strongly support this second hypothesis. Table 1, model B presents the parameter estimates and corresponding t-statistic values. The estimate of this intervention parameter \((TH-400) \) was \(-0.9050, t(150) = 2.08, p<.02\). This means that the number of homicides was reduced on the average 0.905 homicides per week during weeks that the threshold of 400 was achieved, a 22% decrease. This represents quite a substantial reduction. Figure 1 visually illustrates this decline.

Table 1

<table>
<thead>
<tr>
<th>Parameter Estimates of Time Series Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>AR (2)</td>
</tr>
<tr>
<td>0.1869**</td>
</tr>
<tr>
<td>0.0759</td>
</tr>
<tr>
<td>2.46</td>
</tr>
<tr>
<td>AR (4)</td>
</tr>
<tr>
<td>-0.1528*</td>
</tr>
<tr>
<td>0.0776</td>
</tr>
<tr>
<td>-1.97</td>
</tr>
<tr>
<td>AR (8)</td>
</tr>
<tr>
<td>0.2252*</td>
</tr>
<tr>
<td>0.0765</td>
</tr>
<tr>
<td>2.95</td>
</tr>
<tr>
<td>AR (17)</td>
</tr>
<tr>
<td>0.1902**</td>
</tr>
<tr>
<td>0.0758</td>
</tr>
<tr>
<td>2.51</td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>3.841***</td>
</tr>
<tr>
<td>0.2850</td>
</tr>
<tr>
<td>13.48</td>
</tr>
<tr>
<td>TH-400</td>
</tr>
<tr>
<td>-0.9050*</td>
</tr>
<tr>
<td>0.4351</td>
</tr>
<tr>
<td>-2.08</td>
</tr>
</tbody>
</table>

* \(p<.05 \) ** \(p<.01 \) *** \(p<.001 \)

FIG. 1. DECREASE IN THE AVERAGE WEEKLY NUMBER OF HOMICIDES IN WASHINGTON, D.C. DURING WEEKS IN WHICH THERE WERE MORE THAN 400 EXPERTS COLLECTIVELY PRACTICING THE MAHARISHI TECHNOLOGY OF THE UNIFIED FIELD IN THE CITY. Four hundred is the special Extended Maharishi Effect requirement for the District of Columbia.
The size and statistical significance of the intervention parameters in all of the models proved to be robust to alternative specifications of the noise model.

DISCUSSION

The results of this study support the hypothesis that the number of homicides in Washington, D.C. was significantly reduced by the collective practice of the Maharishi Technology of the Unified Field. The data support the hypothesis that the threshold of 400 experts collectively practicing the Maharishi Technology of the Unified Field produces the Extended Maharishi Effect for the nation’s capital. It was not possible to evaluate the effect of the 173 threshold on the number of homicides in the District of Columbia because of the structure of the data.

The time series intervention analysis used here indicates that this decrease cannot be accounted for by factors inherent in the structure of the weekly time series. Further, it is unlikely that history is a threat to this finding because achieving the threshold of 400 seems to have occurred almost randomly: during the 76-week period after the threshold of 400 was first achieved, the threshold was reached 38 times, for a total of six separate intervals, ranging from 1 to 28 weeks per interval. Thus, it is unlikely that a third variable varied systematically with this variable.

It is important to consider alternative hypotheses for the decrease in homicides in Washington, D.C. before concluding that the collective practice of the Maharishi Technology of the Unified Field is responsible for the reductions. Although there has been considerable variation in the number of homicides that have occurred, whether weekly, monthly, or yearly data are examined, there appears to be no major trend in these series. For example, annual data from 1974 to 1982 show the following pattern in the number of homicides: 277 in 1974, 235 in 1975, 188 in 1976, 192 in 1977, 189 in 1978, 180 in 1979, 206 in 1980, 223 in 1981, and 194 in 1982 (Jolley, 1984). Therefore, it is unlikely that a simple trend could explain the results found in this study.

Explanations that are most often given for decreases in violent crime include: 1) seasonal variation; 2) changes in police coverage; 3) an increase in neighborhood watch programs; 4) changes in demographic characteristics, such as a drop in the number of 15 to 29 year olds, the age bracket that commits the most violent crimes, or any change in the racial composition of the population; and 5) weather patterns. Each of these explanations will be considered in turn. Since interrupted time series analysis is a very powerful technique for making causal inferences (McCleary and Hay, 1980), it is improbable that any of these alternative explanations can account for the finding.

SEASONAL VARIATION—Warren et al. (1983) report that studies that examine seasonal and monthly variations in homicides have found inconsistent results. These researchers used national U.S. data for ten years (1969–1978) to discover any well-defined patterns. Monthly but not seasonal homicide patterns were found, with July – September and December being above average times and January – June being below average. However, they note that local areas may have individual patterns.

Monthly homicide data for the District of Columbia from January 1974 to November 1983 were obtained to examine seasonal and monthly variations (Jolley, 1984). McCleary and Hay (1980) demonstrate that in most cases it is better to include adjustments for trends and seasonality directly in the model than to use correctional factors. The time series models that were used in the analysis included several autoregressive components: no other monthly or seasonal corrections were needed. Therefore, it is unlikely that seasonal variation provides an alternative explanation for the finding of this study.

CHANGES IN POLICE COVERAGE—There has been no increase in the size of the Metropolitan Police Department of the District of Columbia (MPDC) in the last several years (Olszewski, 1983). Further, it is unlikely that any unmeasured change in police coverage would coincide exactly with the occurrence of achieving the threshold of 400 experts, which would be necessary to account for this finding, especially since the pattern of the interrupted time series intervention appears to be random.

INCREASE IN NEIGHBORHOOD WATCH PROGRAMS—The MPDC has been aggressively promoting the Neighborhood Crime Watch Program since March 1981. There is virtually no research on the effects of such a program on homicides. However, even if this program were effective in the long-term reduction of homicides, it is very unlikely that the result of this study could be explained by this alternative explanation. This would require that the
increase in neighborhood watch programs resulted in citizens reporting more suspicious activity to the police (which in turn reduced the number of homicides) during those weeks in which the number of experts collectively practicing the Maharishi Technology of the Unified Field reached the Extended Maharishi Effect requirement for Washington. This seems an unlikely alternative.

DEMOGRAPHIC CHANGES OF THE POPULATION—There are three primary demographic factors that must be considered:

1. A decrease in the population size
2. A change in the age structure of the population
3. A shift in the racial composition of the population

A decrease in population size: It is estimated that the population of the District of Columbia decreased from 638,000 in April 1980 to 623,000 in July 1983, a 2.4% reduction (Byerly, 1984). Since the actual number of homicides rather than the homicide rate is used as the dependent variable in this study, this population decrease could be considered as an alternative explanation for the finding of this study. However, two factors make this explanation an unlikely candidate. First, a decrease in the size of the population is a gradual event: population size does not change very much on a weekly basis. The change in the size of the population cannot account for the significant decrease in homicide that occurred at the 400 threshold, or the concomitant tendency for the number of homicides to increase again when this critical threshold was no longer achieved. Second, population only decreased 2.4% during the period of this study whereas the decrease in the number of homicides associated with the collective practice of the Maharishi Technology of the Unified Field was more than 22%. Therefore, it is improbable that this demographic shift could explain the result of this study.

Change in age structure of the population: Fifty-seven percent of the people arrested for murder and nonnegligent manslaughter in the District of Columbia in 1981 were between the ages of 18 and 29 (MPDC, 1982). This age group clearly accounts for a disproportionate number of homicides. Between 1980 and 1982, there was a decrease in the number of individuals in the 15 to 29 age bracket from 127,187 to 120,400, a decrease of 6,787 (Byrnes, 1984). However, age change in the population is a gradual event; age does not change very much on a weekly basis. It is therefore very unlikely that this demographic shift explains the result of this study.

A shift in the racial composition of the population: Prior theory and research have indicated that the racial composition of the population can influence the homicide rate (Ehrlich, 1973; Messner, 1982). It has been suggested that the size of the black population may be positively associated with the homicide rate (Silberman, 1978); this prediction has been substantiated in some (Ehrlich, 1973; Messner, 1982), but not all (Parker and Smith, 1979), previous research.

Unfortunately, data on changes in the racial composition of the District of Columbia for the period of this study were not available (Byerly, 1984). However, according to Byerly, there is no reason to believe that the racial composition of Washington, D.C. changed substantially during the period of this study. Although the proportion of blacks may not have changed, the number of blacks most likely decreased due to the overall population reduction described above. The factors cited above which explain why overall changes in the population are not sufficient for explaining the result of this study are applicable here as well. Thus, it is improbable that fluctuations in the racial composition of the population can account for the finding of this study.

WEATHER—Weather has sometimes been cited as a cause of crime; however, no systematic research has linked weather patterns to changes in homicide rates. Bandy and Lanford (in preparation) directly investigated the effect of daily weather fluctuations on the number of violent crimes in their study which examined the effect of the collective practice of the Maharishi Technology of the Unified Field on the number of violent crimes in the District of Columbia. Four measures of weather patterns were used: percent sunshine; the extent to which the temperature departed from the monthly average (and whether this departure was below average for winter months or above average for summer months); the extent to which a given day’s temperature was substantially different (i.e., more than 15 degrees) from that of the previous day; and the amount of snowfall. Daily weather data for the District of Columbia were obtained from the National Weather Service. The results showed that none of these measures of daily weather had a significant effect on the number of
violent crimes. Further, it is even more unlikely that weather patterns would be an important causal variable when weekly-level data are employed, since daily fluctuations are aggregated, and monthly shifts would be included in the noise component of the model. Therefore, it is unlikely that weather patterns caused the reductions in homicide that are reported in this paper.

In conclusion, the decrease in homicides in the District of Columbia is most reasonably associated with the collective practice by at least 400 experts in the Maharishi Technology of the Unified Field, the requirement to create the Extended Maharishi Effect for Washington, D.C. It seems obvious that any program that can significantly decrease the number of homicides warrants further examination. Other research shows that the Extended Maharishi Effect is not limited to homicide, but applies more generally to the quality of life of the society.

The findings from this study are consistent with prior research which indicates that the improvements in the quality of life of an area are associated with an increase in the coherence of collective consciousness generated from the collective practice of the Maharishi Technology of the Unified Field. The idea that such a small number of individuals can improve the collective functioning of the entire society is very exciting. It is clear that the findings from this study have very important implications for the reduction of homicides and, more generally, for the improvement of the quality of life in society.

ACKNOWLEDGMENTS

I wish to thank Michael Dillbeck, David Orme-Johnson, and Paul Gelderloos for their helpful suggestions, John Jolley for his help in obtaining the District of Columbia homicide data, and Carole Bandy for her help with the data collection.

REFERENCES

DILLBECK, M. C. In press. The Transcendental Meditation program and a compound probability model as predictors of crime rate change. In Collected papers, vol. 4.

HAGELIN, J. S.; CLEMENTS, G.; and SARMA, P. K. In

LANDRITH III, G. S., and DILLBECK, M. C. In press. The growth of coherence in society through the Maharishi Effect: Reduced rates of suicides and auto accidents. In Collected papers, vol. 4.

MERU and MIU FACULTIES. In press. The application of the Maharishi Technology of the Unified Field to all areas of society. In Collected papers, vol. 5.

